Using Error-Correcting Output Codes with Model-Refinement to Boost Centroid Text Classifier

نویسنده

  • Songbo Tan
چکیده

In this work, we investigate the use of error-correcting output codes (ECOC) for boosting centroid text classifier. The implementation framework is to decompose one multi-class problem into multiple binary problems and then learn the individual binary classification problems by centroid classifier. However, this kind of decomposition incurs considerable bias for centroid classifier, which results in noticeable degradation of performance for centroid classifier. In order to address this issue, we use Model-Refinement to adjust this so-called bias. The basic idea is to take advantage of misclassified examples in the training data to iteratively refine and adjust the centroids of text data. The experimental results reveal that Model-Refinement can dramatically decrease the bias introduced by ECOC, and the combined classifier is comparable to or even better than SVM classifier in performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Error-Correcting Codes for Text Classification

This paper explores in detail the use of Error Correcting Output Coding (ECOC) for learning text classifiers. We show that the accuracy of a Naive Bayes Classifier over text classification tasks can be significantly improved by taking advantage of the error-correcting properties of the code. We also explore the use of different kinds of codes, namely Error-Correcting Codes, Random Codes, and Do...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems

Classification (machine learning): How does one algorithmically classify the though a more effective approach could be using error correcting codes: @(cs/9501101) Solving Multiclass Learning Problems via Error-Correcting Output Codes. to solving machine learning problems can be broadly useful.

متن کامل

Using diversity measures for generating error-correcting output codes in classifier ensembles

Error-correcting output codes (ECOC) are used to design diverse classifier ensembles. Diversity within ECOC is traditionally measured by Hamming distance. Here we argue that this measure is insufficient for assessing the quality of code for the purposes of building accurate ensembles. We propose to use diversity measures from the literature on classifier ensembles and suggest an evolutionary al...

متن کامل

Improving Multiclass Text Classification with Error-Correcting Output Coding and Sub-class Partitions

Error-Correcting Output Coding (ECOC) is a general framework for multiclass text classification with a set of binary classifiers. It can not only help a binary classifier solve multi-class classification problems, but also boost the performance of a multi-class classifier. When building each individual binary classifier in ECOC, multiple classes are randomly grouped into two disjoint groups: po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007